P7 PDMS-based Hybrid Materials Thermosetting silicone resin material

The PDMS hybrid material, Yamamura's original material, is a thermosetting condensation polymerization type silicone resin with an inorganic Si-O bond as its main backbone and no C-C bond in its structure, resulting in a high heat resistance temperature and no yellowing or cloudiness when exposed to UV light or heat. Therefore, there is no decrease in transmittance or change in characteristics. Furthermore, by using special raw materials, the volatilization of low-molecular-weight siloxane, which has been a problem with conventional silicone-based materials, is reduced to a very small amount. We can also design custom compositions to meet your desired properties.

Features

High UV Transmittance Compared to conventional sil transmittance in the UV regio resistant to changes such as	icone-based resins, it achieves high n. It also has excellent UV resistance and is yellowing.
	: Max 250°C (cleared 1000h) s (-55 \Leftrightarrow +125°C) for electronic components.
materials with differing coef	ven after curing, it can be used to bond ficients of thermal expansion. It can also be ue to its excellent bending resistance.
Adhesion adherend during curing, m	unctional groups present on the surface of the aking it possible to bond to a wide variety of the bonded surface interface is protected, less likely to occur.
	PDMS-based hybrid materials (Yamamura)
♦ Generation of low molecular weight siloxane	500000
In general silicone resin materials,	450000 400000 350000
volatilization of low-molecular-weight	300000 2 250000
siloxane is an issue. Yamamura has reduced	200000 150000 100000
the generation of low-molecular-weight	
siloxane in hybrid materials to an extremely	0 5 10 15 20 25 30 35 Retention time
low level (less than 10 ppm) by refining at	
the raw material level.	silicone-based resins (other companies)
Contact Information	400000 300000 200000 100000 100000 0 0 0 0
New Product Development Department	0 5 10 15 20 25 30 35
4207 Ikonobecho, Tsuzukiku, Yokohama, 224-0053	Retention time

This products information is subject to changed or updated without notice.

YAMAMURA PHOTONICS CO., LTD.

PDMS-based Hybrid Materials Thermosetting silicone resin material

Yamamura Photonics has prepared representative part numbers with different characteristics. Please consider the product number that best suits your application.

《High Transmittance Type (visible light to UV-A)》 ■ HE59N

HE59N is a high transmittance resin material developed for UV-LEDs in the UV-A to 400 nm range. In addition to its high light resistance, HE59N has a high adhesive strength unique to hybrid materials, and it adheres firmly to packages, etc., thus providing corrosion protection.

			HE59N	
Viscosity (Tuning fork type)		Pa∙s	7.2	
Mixing ratio (Main : Cure agent)		Wt%	100:5	
Curing conditions		-	$80^{\circ} \times 30^{\circ} min \rightarrow 200^{\circ} h$	
Characteristics of cured product	Elastic modulus	Мра	0.8	
	Elongations	%	350	
	Transmittance (on silica glass)	@300nm	89.2%	
		@400nm	92.0%	
	Hardness	shoreE	52	

《High Transmittance Type (UV-B to UV-C)》 ■HE81F、HE84F、HE86F

HE81F, HE84F, and HE86F are resin materials developed to achieve high transmittance in the deep UV region and improved UV resistance. It can be used as an adhesive for lens materials and UV packages.

			HE81F	HE84F	HE86F
Viscosity (Tuning fork type)		Pa∙s	21	13.3	17.4
Mixing ratio (Main :	: Cure agent)	Wt%	100:5	100:10	100:10
Curing conditions		-	80°C×30min → 200°C3h	100℃×15min⇒250℃×3h	
Characteristics of cured product	Elastic modulus	Мра	0.8	1.3	1.5
	Elongations	%	350	140	120
	Transmittance	@265nm	92.0%	91.1%	90.2%
		@280nm	92.5%	92.0%	91.2%
	Hardness	shoreE	52	59	65

《High Heat Resistance Type》 ■HP36UPN-1

HP36UPN-1 is a high heat-resistant resin material developed as a base material for functional sheets; it has heat resistance of 200-250°C and can be used as a base resin for heat-dissipating sheets, etc. by adding ceramic filler.

			HP36UPN-1	
Viscosity (Tuning fork type)		Pa∙s	7.1	
Curing conditions		-	$80^{\circ} \times 30^{\circ} min \rightarrow 200^{\circ} \times 30^{\circ} min$	
Characteristics of cured product	Hardness	shoreE	32	
	Volume resistance (60 sec)	$\times 10^{16} \Omega/cm$	500v: 2.32 1000v: 4.44	
	Dielectric constant	100Hz	3.23	
		1kHz	3.65	
	Dielectric strength	kV/mm	DC: ≧70kV AC: ≧5kV	

Contact Information

New Product Development Department

4207 Ikonobecho, Tsuzukiku, Yokohama, 224-0053 Japan URL : https://www.yama-ph.co.jp/en/contact/ (Inquiry form)

This products information is subject to changed or updated without notice.

YAMAMURA PHOTONICS CO., LTD.